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Stability of steady motions of Chaplygin‘s nonholonomic systems subjected to
the action of potential and dissipative forces and possessing ignorable coord-
inates is investigated, A survey of available results in this field appears in [1].

1. Letus consider a scleronomous nonholonomic system subjected to forces ad-
mitting a force function, We denote the generalized coordinates by @py - . .+, @y,
and assume that the generalized velocities ¢;'s . . ., ¢, are linkedby n —m
nonintegrable relationships of the form

?u."='§lzbur(9)§r' pw=m+1,...,n) (1.1

Assuming that the system can be subjected to dissipative forces, derivatives of the
Rayleigh function F whose coefficients are independent of g, and that the kinetic
energy T, the force function U7, and the coefficients of links b, are also
independent of g,, we represeat the equations of motion of the system in Chaply-
gin's form

d_9Ts _ 3(T*4U) + (1.2)
dt dq; dq,
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2r* = 2 QrsGrQsy 2F% = 2‘[ frs80rqs, Q= 2 eupr'
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Ty sme]

are obtained from 2T, 2F and 6T/ dg,’by the elimination of g’ using formulas (1, 1).
We assume that the coordinates g, (@ = ! 4+ 1, ..., m) are ignorable co-

ordinates in the meaning of the definition in [2] which generalizes the definition in

[3], i.e. coordinates g, do not explicitly appear in Eqs. (1. 2) where only their
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accelerations and, possibly, velocities are present, More exactly, we assume that

aTe U aF* PR o
=0’ == ’ = 1 = .
=% =% s 033;“_;‘_19’“""‘" o a9
@=I+14,...,m; p,r,s=1,...,m)
We further assume that
n
oF % .4
-3;.—80, Z %ﬂ?mﬁo ((l,ﬂ,‘\’#l-{»i,...,m) 1.4
$mif-{-1

The first group of conditions in (1, 4) implies the absence of dissipation with respect
to cyclic velocities and the second ensures the existence of an (m — I)-dimensional
manifold of steady motions, Obviously, system (1,2) admits under conditions (1, 3)

and (1,4) the solution
(1.9)

gi = Qies

g =0 (i=1,...10);
9’ =da @=141,...,m)

where the m constants o and g,," satisfy the system of [ << m equations
m n
83U o[ 4 9 .
-3-4—-—}- ; Qo ds [*-2-—-3{;9-—{- Z G,;gvgh]ao (i=1,..,0) @6
i &y Pomlf1 t o1

Let us consider an arbitrary point of manifold (1, 6) and formulate the problem of
stability of solution (1, 5) of system (1. 2) with respect to perturbations of variables

gi, gi and g,°.

2, We set
(t=1,.. 0 Ya=¢a — Og (@z = gao’s

Ly = qt — Guo
a=1-+1,...,m
and write the equations of pertubed motion as
Z“ﬂ'x{t + Z“iﬁyﬂ' = };J’fxn'l?wh + z;xf (0p + yg) Byjp + (2.1
] B i I
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in which and everywhere below &, j,h=1,.. .. La, By=1+1,..., m
and B = m-1,..., n. Allcoefficients of system (2, 1) are calculated for
g1 = ;o -+ z; » and symbol A is defined as follows:

A = P (go + z) — ¥ (q0)

m
da,
aqj + ; (BupViis + BuVuis)

da,
Bi‘ == ]B ———
iB T—qi
1 aaw
Byy =132 + Y, tusvuny
M

da,, .
Bh=2 L
@j A BunVias 33;‘

da
Bojp = 2 (BugVias + BusViap) — "Bff'
B

The first approximation equations in the neighborhood of solution (1. 5) assumes
the form

Se’s” + Jewys' = le” + ) + (2.2)
;1 (e + &) 25+ % wigyp

Naaf’zy” + %} Gop’yy’ = Fves"z;

8y +dij = %‘%Bifﬁ —f gy=—gjh dy=dj;

ay 3By
°ﬁ+3a=m+;ma%“w?*; Cij = Cjy €5 == — &
7

Ujg = %‘% (Bipe. + Biap): Vaj = ;WB‘,”

where the superscript ° indicates that the particular quantity is calculated for 2
= ( (in initial variables for ¢; = g;,).
The characteristic eqution of system (2,2) has m — ! zero roots with the remain-
ing 2l roots satisfying the equation

@i’ — (8° + A A — (e° + &iX) || N asg™ — usp” =0 (23

det 1 0ah — vl lass]
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When at least one of the roofs of Eq. (2,3) lies in the right-haad haif-plane,
solutton (1, 5) is unstable, If, however, all roofs of Eq. (2.3) are in the left-hand
half-plane, we have conditions of the critical case of several zero roots, We shall
show that the particular case of several zero roots occurs in this problem,

3. Equations (2,2) have obviously m — ! linear integrals

;aaic’xf + %a;sys - % xjmﬁB;iB = 2Zq (2 = const, a={+4+1,...,m) (3.1)
s

We substitute variables z defined by formulas (3. 1) for variables y , and write
down the system of equations of perturbed motion in variables z, z°, and z after
resolving system (2, 1) for higher derivatives, We then obtain

.'t{. = x.il (3. 2)
xi'. = E Aﬁ ($) (Di (I’ Z) + 2 xj"F‘ij (33, 7', z)
) K
w0’ = 3 Jouds (@) (5, 9) + Rz Yoy (2,7, 2)
1

where A,; are elements of the matrix inverse of matrix [ a,; || (r, s, = 1,.., m);
expansion of functions ; in powes of z and z , and of functions W,; in
powess of 2, =, and z , beginning with terms of order not lower than the finst, and
functions W,,° are generally not equal zero. Functions @;, ¥;; and ¥,; are not
presented explicitly owing to their unwieldiness. Note that expansions of the right-

hand sides of the last m — | equations of system (3. 2) begins with termas of order
not lower than the second, since

SEGLA:{’ =8;=0 (as£})

Since the expansion of functions @; (z, z) may contain terms that are linear
with respect to z , it is necessary to carry out the transformation of variables, which
would reduce the system to the form that is standard for the analysis of the critical
case of several zero roots. For this we cousider the system of equations

z = 0*?1415 (z) ©; (2, z) + ;xf (e, 2)=0
whose solution for z and z' yields
z/ =0, z = X;(2)

where fanctions X, satisfy the system of equations
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D;(X,2) =0 (det | 45|l %= 0)

whose solution is a priori known to exist, since by assumption all roots of Eq. (2, 3) lie
in the left-hand half-plane,
We carry out the change of variables

i =X;@ +u ' =y
::d write down the system ofequationsof perturbed motion in vardables u,v,z . We
ve
u = L; (u,v) + U, (u, v, 3) (8.3)
v = Ly (u, v) + Vi (v, 2)
%’ = B[ Joaudy (X (@) +u)] O X @) +u) +
gv,-‘l’a,- (X (z) + u,v, 3)

where Ly (u,v) (k =1, ..., 2I) are linear forms of variables u. and v’, and
the expansions of functions U; and V; in powers of u, v, and 2z begin with terms
of order not lower than the second,

When u = v = ( then obviously the right-hand sides of the last m — I
equations of system (3, 3) are identically zero, consequently, also U; (0, 0, 2) =
Vi (0, 0, 2) =0 [45)

Thus the statement that when all roots of Eq, (2. 3) lie in the left-hand half-plane,
the particular case of the critical case of several zero roots is realized, is proved,
Consequently, when all roots of Eq. (2, 3) are in th left-hand half-plane, then solution
(1. 5) of system (1, 2) is stable (but not asymptotically), Any perturbed motion fairly
close to the unperturbed tends to one of the possible steady (but not to the unperturbed)
motions of the form (1, 5) that belong to the manifold (1, 6) when { — oo .

4, Equation (2, 3) can be reduced by elementary transformations to the form
det | AN — (G+DA—(C+E)|=0 (4.1)

which is the characteristic equation for the system
Aw” = Guw' 4+ Duw’ + Cw -+ Ew (4.2)
w = colon (w, ...,w;), A=|a;°— 2 aip hﬂaaza I
G+ D=|gy+di>— 2 hap (a1p° vJa +a,¢ uig’) |
¢=—G D=D
CH+E=|c;+ e+ azﬁh.,ﬁum"v,f", C=C, EE=—E
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where h,p° are elements of the matrix inverse of matrix || a,p° || (ay B = I +
1, ..., m) and the prime indicates transposition,

Matrix 4 is evidently of positive definite quadratic form, i.e. it is possible to
consider system (4. 2) as consisting of equations of motion of a mechanical system sub-
jected to the following types of forces: potential Cw, positional nonconservative

Ew, gyroscopic GW', and dissipative and accelerating Dw’ . The following
statement is valid on the basis of the above exposition,

The steady motion (1, 5) of system (1, 2) is stable (unstable) with respect to
variables 9i — Qioy ¢i'» and ¢, — gy’ when the zero equilibrium position  of
system (4. 2) is asymptotically stable (exponentially unstable).

A number os theorems on stabflity or instability of steady motions of Chaplygin‘s
nonholonomic systems can be obtained using the last statement and results of investiga-
tions of systems of the form (4, 2) {6 —10}, as was done earlier in investiagion of the
stability of equilibrium positions of nonholonomic systems [11].

When G == ( all theorems in [11] are valid, and when G 0 and £ =0
Theorems 3,1, 3,3, and 3,4 in [11] are valid, while Theorem 3.2 is not, Finally,
when G==0 and E szt0, the following statements are valid,

1°, If function 2V = —w'Cw has a minimum at the coordinate origin and

D = —8D,, where D, is the matrix of positive definite form, then for fairly
large § >> 0 the steady motion (1,5) of system (1, 2) is stable,

2°, When one of the following conditions is satisfied:

a) D=0 Eq. (4.1)contains odd powers of A;

b) det] —(C+ E)| <0; and

¢) function 2H, = —w’ (}/,GA™G + C)w has a maximum at the coordinate
origin, the steady motion (1, 5) of system (1. 2) is unstable,

Remark. Since (gyo) guo’) 18 an arbitrary point of the manifold of steady
motions (1,6), the obtained results make pomible the investigation of all motions of
the input system (since all coefficients of system (4, 2) depend o1 @4y, and ggo).
If the solution of system (1. 6) can be represented in parametric form, for instance, in
the form

qaouzma (a=l-+-i,..., m); q10=(Pi(m) (i:i,_._'[) (4.3)

then, by substituting (4, 3) into the formulas for coefficients of matrices of system (4. 2)
and using the obtained results it is possibie to separate on surface (4.3) regions of stable
or unstable steady motions,

5. We illustrate the above results on the example of investigation of stability of
steady motion of a torus on an absolutely rough horizontal surface.

We define the motions of the torus by the Cartesian coordinates * and y of the
center of mass projection on the horizontal plane and by Euler's angles 8,1, and

@ . We denote by m the torus mass, by 4 and B the equatorial  and polar

moments of inertia, by r the radus of the torus cross section, and by R - r the
radius of the equatorial circle, In that notation the Lagrange function and the system
relation equations that define the absence of slip at the point of torus contact with the
plane are of the form
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L=Ym @+ y® + 1, (4 + mR*sin® 0)0"* + ¥/, (4 cos? § +
B sin® 6y + Y,B¢™ — Bo'y" sin 6 — mgR cos 6

2" = (R + r cos O)cos " — R sin 0 cos y" — (R cos 6 +
r) sin $8°

¥ = (R 4 r cos 8)sin 9" — R sin 8 sin Y’ + (R cos 6 4
rcos Po°.

Assumning that the system can be subjected to the action of dissipative forces,
derivatives of the Rayleigh function F = 1/,H0™ (H = const >> 0), we can readily
show that ¥ and ¢ are ignorable coordinates in the sense of the definfition (1, 3)
and (1,4), Hence the input system can perform steady motions of the form

b=a, ¢ =0, ¢ = (5.1)
with the three constants o, @ and § satisfying the single equation

mgR sin & — [B cos a + m (R cos & + r)(R + r cos a)laQ + (5.2
[(B — A)cos @ -+ mR (R cos & + r)lsin aQ? = 0

Applying these results to an arbitrary point of the manifold (5, 2) we find that
the steady motion (5, 1) is stable (unstable), if the trivial solution of equation

[4 + m (R* 4+ 2Rr cos @ 4+ P)lw™” + Huw' + J (KQ* + (5.8)
LQw + Mw? + N)w = 0

J = [AB + Am (R + rcos a)* + Bmr? sin®> a]™ cos™* ¢ >0

K =[Bcosa + m (R cosa + r)(R + rcos a)llAm (R +
rcos a)2R + rcosa) + AB (1 + sin® &) + Bm sin® « (r* —

R*) — B*sin* a] — [(B — A -+ mR¥cos 2a + mRrcosall4B +
Am (R 4 rcosa)® + Bmr®sin*alcosa — 2[(B — 4 +

mR?®) cos @ + mRrll— B* + 24B + 24m (R - r cos @)* —
Bm (R* + Brcosa -+ r® cos 2a)lsin?

L =[Bcosa 4+ m (R cosa -+ r)(R + r cos a)llAm (2R +
SRrcos o + 3r? cos® @) + AB + Bmr® (3sin? @ — 1))sin @ —
[B+ m(R*+ 2Rrcosa + r))[—AB cosa 4+ Am (R +
rcos a)? cos @ -+ 2B% cos a -+ Bm (2R® cos o + 2Rr +
rsina cosa)lsina, M = BB 4+ m (R® + 2Rrcos a +
™IB cos @ + m (R cos a -+ r)(R -+ r cos a)]

N = —mgR [AB + Am (R + r cos a)? + Bmr® sin?® alcos® o
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is asymptotically stable (exponentially unstable), This is the equation of motion of a
mechanical system with a single degree of freedom subjected to the action of dissipat-
ive and potential forces. Fron: this we immediately obtain the condition of stability
(instability)

KQ* + LQow + Mo®* + N >0 (< 0) (5.4)

of steady motion (5, 1) in the form of the minimum (absence of minimum) of potential
energy of system (5, 3),

When r = ( condition (5,4) becomes the condition of stability of the steady
motion of a hoop (see, e, g., [1,3]), when g = 0 and @ = () it becomes the cond-
ition of stability of a torus spinning about the vertical at constant angular velocity,
and when @ = 0 and Q = 0 it becomes the condition of stability of uniform
rolling of a torus along a straight line (see, e.g., [3]).
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